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Abstract. We consider a one-dimensional model for many-electron atoms in strong magnetic
fields in which the Coulomb potential and interactions are replaced by one-dimensional
regularizations associated with the lowest Landau level. For this model we show that the maximum
number of electrondmax satisfies a bound of the forvimax < 2Z + 1 +c+/B whereZ denotes the
charge of the nucleug the field strength andis a constant. We follow Lieb’s strategy in which
convexity plays a critical role. For the cade= 2 with fractional nuclear charge, we also discuss
the critical valueZ,. at which the nuclear charge becomes too weak to bind two electrons.

1. Introduction

It is well known that systems in strong magnetic fields behave like systems in one dimension,
i.e., a strong magnetic field confines the particles to Landau orbits orthogonal to the field,
leaving only their behaviour in the direction of the field subject to significant influence by

a static potential. Therefore, a better understanding of one-dimensional systems is essential
to understanding the behaviour of systems in strong magnetic fields. Although many one-
dimensional systems, including that of a hydrogen atom with a single electron [2, 8], have
been thoroughly studied, relatively little is known about multi-particle atoms confined to one
dimension.

In this paper we study the question of bounds on the maximum excess negative charge
using one-dimensional models of many-electron atoms. Because our goal is an understanding
of the behaviour in one dimension, we do not deal with the question of accuracy of our one-
dimensional models as approximations to, or reductions from, real three-dimensional atoms.
However, we sketch such a reduction as motivation for the models considered.

There is some question as to the proper replacement for the Coulomb potential in one
dimension[8]. The potentidf (x) = 1/|x|is so singular thatthe one-dimensional Hamiltonian
—A — 1/|x| is not even essentially self-adjoint. Fortunately, an electron in a Landau orbit is
attracted to a nucleus with chargenot by a potential of the form Z /| x|, but by a regularized
potential which is finite at the nucleus. However, the corresponding regularization of the
electron—electron interaction is more complicated unless both electrons have zero angular
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momentum in the direction of the field. In that case, the regularized interaction has a simple
form which is the basis for our model.

There is an extensive literature on atoms in magnetic fields. Interestin atoms in extremely
strong fields, which began in the 1970s after the discovery of pulsars, has recently been
renewed in the 1990s, culminating in the comprehensive work of Lieb, Solovej and Yngvason
(LSY) [16-18, 29]. For a discussion of early work on approximations for atoms in extremely
strong magnetic fields we refer the reader to the insightful paper oeRal[19] and to the
review by Ruderman [20]. References to later work are given in the introduction to [17] and a
summary of the work of LSY [17,18] is given in [16,29]. Rigorous work on atoms in magnetic
fields began with the work of Avron, Herbst and Simon (AHS) [1-3]. LSY [16—18,29] not only
analysed extensions of Thomas—Fermi theory in five distinct regions, but showed that these
regions suffice to give the correct asymptotics for the exact Hamiltonian. In particular, they
showed that the maximum number of electrafig(Z, B) which can be bound to a nucleus
of chargeZ in a constant magnetic field of strengghsatisfies liminfNma(Z, B)/Z > 2 as
Z — oo andB/Z® — oo. This should be compared with asymptotic neutrality [7, 15, 25],
i.e.limz_ o Nmax(Z, 0)/Z = 1, for atoms without magnetic fields. We hope that the analysis
of the simple model in this paper is a modest first step toward a better understanding of the
mechanism by which extremely strong magnetic fields bind an ‘estrelectrons, as well as
the conjectured convergén.«(Z, B) < 2Z.

The full three-dimensional Pauli Hamiltonian for Alrelectron atom with nuclear charge
Z in a constant magnetic field of strength acting on®", the n-fold tensor product of
L’(R® ® C?,is

N

H(N,Z B,a)=) [|[Pi+AP+c;-B—Z/Irjll+> a/lrj—ml (1)

j=1 j<k
where A is a vector potential such th& x A = B and« is a coupling constant introduced
for convenience in discussing scaling. If the spin-coupling term is omitted, it often suffices to
consider the corresponding scalar Hamiltonian, whichwe deiiod&, Z, B, «), as an operator
acting only on L2(R®)]" or the ‘space’ portion oft". We will choose our coordinate system
so that the fieldB = (B, 0, 0) is in thex-direction and the gauge so that2= B x r. The
Hamiltonian (1) satisfies the scaling relati#h(N, Z, B, 1) = BH(N, ZB~Y/2,1, B~Y/?),
i.e., we can scale out the field strength by replacing the nuclear ctfalmeZ B~/? and
reducing the electron—electron interaction By*/2. Alternatively, we could have included
the electron charge unitexplicitly and replaced by e B—%/4.

We let Eq(N, Z, B, @) denote the infimum of the spectrum of the scalar Hamiltonian
H(N, Z, B, o) defined above. It is well known that the spectrum of the ‘free’ Hamiltonian
|P;+AJ2is[B, o], thatthe spectrum dfP; + A|*+o ;- B = [o ;- (P;+ A)]?is [0, co) and that
the lowest Landau level has energywith infinite degeneracy indexed lay =0, 1,2, 3, ...
corresponding to angular momentuam quantized in the field direction. Therefore, the
continuous spectrum df (N, Z, B,«) is [B + Eo(N — 1, Z, B, a), 00), i.e., the continuum
begins atB plus the ground state energy for — 1 electrons. Thus the question of whether
ornotH (N, Z, B, @) has a bound state is determined by whether or not some test fudction
satisfies

(W,H(N,Z,B,a)V) < [B+EoN —1,Z, B,a)]| V| 2

For the full HamiltonianH (N, Z, B, «), the continuous spectrum ig§{(N — 1, Z, B, «), 00)
which implies thatH (N, Z, B, «) has a bound state if and only if there i®ac 7" for which

(U, H(N,Z,B,a)¥) < Eo(N — 1, Z, B, a)|| ®|2. 3)
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For the remainder of this paper we will omit explicit consideration of spin (although we will be
able to draw some conclusions indirectly. See the remark after equation (13)). Our methods
cannot handle the - B term explicitly and the inclusion of spin in the wavefunction does not
affect the remaining results in any essential way.

We now consider the the three-dimensional energy minimization problem restricted to
functions whose behaviour orthogonal to the field is described entirely by product functions
in which all electrons are confined to the lowest Landau level, i.e., we restri¢tetectron
functions¥ of the formW,,, ,,, = ®(x1...x,) ]_[/1<V=1 y,ffk (rx, 6r) where

)/,f (r,0) = [rm!] =12 g(m+1)/2,.m o= Br?/2g~imf

denotes the Landau level with energyand angular momentumm. (Note that we are using
cylindrical coordinatesgx, r, 8) withr = /y2 + z2sothatr| = +/x2 +r2.) Such expectations
satisfy

(Woyomr HN, Z, B, DWWt ) = (Wony o HIN, Z, B, )W, ) + N B

= B(W,, my, HIN, ZB7Y2 1, B7Y?) @, )+ NB (4)
where
. N
H(N,Z, B o)=Y [-IP{> = Z/Irjll + Y a/Ir; — ml. (5)
j=1 j<k

For each fixed choice ofi1...my the n]inimization problem can be reduced to a one-
dimensional problem for the Hamiltoniat"+~"~ (N, Z, B, «) in which the kinetic energy

has the USU&I—%ZZ form and the potentials/lr;| and ¥/ |r; — r| are replaced by regularized
potentials denoted by,fr_ (x;) and W,f’_qu(pc i — xk|), respectively:

V5 (x) =/ ywl2/ 1] dy dz

Bm+l oo r2me—Br2
= rdr
m! /0 Vx2+r2
oo m,—u
u-e
—m) ] L qu
0 +/x2+u/B
2Bt Lo [ 2
— eBx (1‘2 o XZ)me—Bt dr (6)

which satisfies the scaling relatidn® (x) = \/E\/,,}(\/Ex) as one would expect from the
scaling properties off (N, Z, B, «). er-,m is defined analogously; we postpone discussion
of its explicit form. That the regularizatljonzs,,,g(x) are important for atoms in magnetic fields
goes back at least to Schiff and Snyder [24] in 1939 and played an important role in the AHS
study [2] of hydrogen. In the case = 0 andB = 1, (6) can be rewritten as

Vox) = e [1 - erf(x)]
o e 2 [ 2

A comparison with the usual Coulomb potential is given in figure 1.
We now describe the correspondence between a restricted three-dimensional minimization
problem for a Hamiltonian with a magnetic field, namely,
Egll-"mN(N, Zs Bs a) = Inf (lyml...mNs H(N7 Z? B’ a)lymlmN> (8)

my.mpy
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Figure 1. Comparison of the potentials (reading from the top dow@‘ﬂ—l, —Vo(x), and—%.

and the one-dimensional minimization problem

Egt™™ (N, Z,B,a) = igf(CD, H™" (N, Z, B, 2)®) (9)
where
N N d2
HM" (N, Z, B0 =} | =0 = ZV, () |+ ) Wl (1 = xi) (10)
j=1 J Jj<k

in which no magnetic field is explicitly present. Since
Wy omn HIN, Z, B, @)W, ) = (®, H™" (N, Z, B,a)®) + NB (11)
we can conclude that
(Wo.mys HIN, Z, B, o)Wy my) > Eg V" (N —1,Z,B,a) + B
& (O, H"" (N, Z, B,a)®) > Eg*"™ (N — 1, Z, B, a). (12)

Thus, we have reduced somewhat artificial problem of whether or not an atom in magnetic
field B whose electrons have prescribed angular momentum corresponding tomy has
a bound state to that of whether or not a related one-dimensional system has a bound state.
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Although, we do not consider spin coupling explicitly, it does follow from (3) that we can also
conclude that

<‘Ilm1mmN» H(Na Za Ba Ol)‘I’ml...mN> > E(r)m...mel(N - 13 Za B» 05)
& (@, H""" (N, Z, B,a)®) > Eg""*(N = 1, Z, B, ) (13)

wherew,,, .., is chosen so that all components@¥ correspond to spin ‘down’. (This
observation, which is a fortuitous consequence of the physical fact that the coefficenBof
is exactly 1, was pointed out to ug B P Solovej.)

We now consider the regularization of the interaction in the special case in which
m; =m; = 0. Recall thay @ (y, z) = B ~le B0**/2 = Br-1g B7°/2,

B 21.,B 2

(y1,21) (y2, 22)
W(fo(lxl—le)=// dylel// dy, dzp— 0 y12 VI%vg 02, 22)| :
V1= x2)2+ [(y1, 20) — (02, 22)|

o0 2re B’ 1 -
5[ _ Ly (M) (14)
0 Vg —x)2+ 262 /2 NZ)

where we have made the change of variables

1
V2
with s = |s|, r = ||, and used the fact that

|)/oB()’1, Z1)|2|VOB(y2, ZZ)|2 — BZT[—Ze—B(er'ZZ) — BZJT—Ze—B(SZﬂZ) — |)/oB(5)|2|)/oB(t)|2-
Thus, the exceedingly simple relatioi’,(jx1 — x2|) = 272V (271/2|x; — x,|) follows
from the invariance ofyOB(s)|2|yoB (t)|? under the transformation &f ¢ to (s t)/ﬁ. This
unusual invariance, corresponding to the mixing of coordinates of two particles, will not hold
if m # 0. Symmetrizing the product or replacing,, .., by an arbitrary element of the
projection onto the lowest Landau level, would require consideration of exchange terms as
well. Therefore, we will only study models corresponding to constraining all electrons to have
angular momentum zero. Sindg_o is then symmetric with respect to exchangepf, z;)
with (yx, zx), it will have the same permutational symmetrydag; ... xy).

Despite the severity of the restrictionio= 0, our model seems well-suited to study of

the bounds on the negative ionization. Integration by parts of (6) easily yields

VEL(x) < VER) < VE) < 1/1x] (15)

m

[On)+022] b= —=[0m 2 — (2. 22)]
Y1, 21 y2, 22 = \/E Y1, 21 Y2, 22

S =

with the difference greatest at the origin and all potentials satisfyjfig) ~ 1/|x| for largex.
Moreover, for any choice of ;, m; whenevefx; —x;| is Iarge,Wn’f/_,mkqxj —x;|) = 1/|x;—x;l
as well. Thus it appears unlikely that placing some electrons in Landau levelswt will
allow binding ifm = 0 does not.

With this heuristic background, we study models fdrelectron atoms in one-dimension

corresponding to Hamiltonians of the form
h(N,Z,M)=MH*°(N,Z, M2 1)

i[ 1 d? 2Vl ):|+Z 1V<|x.,-—xk|) (16)

— e ZVo(x; il 7Y (L el

=L Mdv? ! V2 V2

with the ‘mass’M proportional toB—Y/2. Because of the scaling relatidh(N, Z, B, 1) =
BH(N, ZB~Y2,1, B~1/?), the only role of the field strength in the one-dimensional situation
is to reduce the mass by a factor®f*2. Thus, for simplicity, we have set both = 1 and

the coupling constant = 1 leaving the field strength implicit in the ma&&



2572 R Brummelhuis athM B Ruskai

As observed in [2], the regularized potentials satisfy

1 < ! <VEB(x) < ! (17)
= S VW)X 77
SJm+ DB+ x| - /J(m+ 1B+ |x|? | x|

The cut-off potentialV,(x) = 1/(|x| + 1) is also of some interest. Haines and Roberts [8]
have given explicit solutions to the eigenvalue problem for the hydrogenic Hamiltonian
—A — Veu(x). By the above remark/ou(x) < Vg(x) < 1/|x].

In sections 2 and 3, we study Hamiltonians of the form (16) in the two dases/: and
V = V,. Forboth models we show that the existence of abound state impHe§Z+1+c«/§.

2. Two-electron systems

We now discuss in more detail the behaviour of the one-dimensional Hamiltonian (16) when
the number of electrons i§ = 2. Although our discussion is descriptive and non-rigorous,
we believe the insights are useful. The two-electron Hamiltonian can be written in the form.

2 2
h(2.Z, B = —VB [d—z + d—z} + W (x1, x2) (18)
d)cl d)c2
where
W (x1, x2) = —ZVo(x1) — ZVo(xa) + %Zvo (%) . (19)

Consider a classical system of three particles on a line with charfesZ, —1 interacting
with the usual inverse square Coulomb force (or, equivaleqidy,/|x; — x;| potential). The
only potentially stable configuration is one in which the particles are arranged symmetrically
with the two negatively charged particles on opposite sides of, and the same distance from, the
positive ‘nucleus’ as shown in figure 1. Even in this case, the system is stable oytfo}f.
ForZ < %, both ‘electrons’ will move off to infinity, while foZ > ;11, the ‘electrons’ collapse
into the centre. This suggests that for- ‘—11 one might be able to show that the system binds
by using a trial functionV, in which the two electrons are localized on opposite sides of the
nucleus at a distance sufficiently far from the centre thaty(+a) ~ 1/a. (Permutational
symmetry is not relevant; if such a trial function binds, then a bosonic system will also bind.)
This picture would require thatx; < a for each electron so that, by the uncertainty principle,
the kinetic energy satisfie{slfa[—%}]%) > 1/a?. Thus we estimate

B 27 1
(W,h(2,Z, BY2)w,) > 2‘/—2_ S — (20)
a a 2a
Minimizing overa yieldSamin = 2v/B/(Z — %) and
(Z-3)7
V,h(2,Z, BY,) > —— 47 21
(W h( W) Wi (21)

The continuous spectrum begins at the ground state energy of the corresponding one-electron
Hamiltoniank(1, Z, B~Y?) = —\/E%Z — ZVo(x) which Avron et al [2] showed is given

asymptotically (for largeB) by Eo(1, Z, B~Y?) = —%(Iog 5—%)2. Thus, binding would

require
1\2 Z \?
zZ-= 27?2 (Io —> . 22
(2-3) ~2# (w0 5 #2
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-1.6-

Figure 2. W(x,—x) and W(x,0) for (reading from the top down)Z =
0.25,0.3,0.35,0.4,0.5,0.6,0.7,0.8. The left graph, W(x, —x), describes the potential
when the electrons are on opposite sides of the nucleus with each a distamn@g. The right
graph,W (x, 0), describes the potential when one electron is fixed at the origin; the left asymptote
then corresponds to the other electron moving to infinity.

This is obviously false for larg®, which suggests that the uncertainty principle prevents the
corresponding one-dimensional system from binding, even when the classical system collapses.
BecauseV ~ B~Y?, large field strength corresponds to small mass, i.e., as the field strength
increases, the electrons become ‘lighter’ and more difficult to localize. Thus we must seek a
different mechanism to explain binding of a one-dimensional two-electron atom.

Fortunately, our model provides an alternative mechanism for binding. The regularization
of the potential at the origin combined with the effective reduction of the interaction by
1/+/2, permits both electrons to be close to the nucleusZfor 1/2%2 in the sense that
—27ZVy(0) + 2712V, < 0. Of course, the uncertainty principle also precludes binding with a
trial function in which both electrons are exactly at the centre. Nevertheless, we believe that
the mechanism for binding is that the effective reduction in the interaction permits the two
electrons to overlap strongly near the nucleus.

The Hamiltonian (18) can be regarded as describing either two particles in one-dimension
or one particle in the field of the two-dimensional poteni#&lx, y) given by (19). Regardless
of our viewpoint, the continuous spectrum will begin atthe AHS [2] estimate?}(log 5—%)2.

Since this is close to zero for larde we will regardW (x, y) as attractive where it is negative

and repulsive where it is positive. One might exp@atr, y) to have its minimum on the line

y = —x, corresponding to electrons on opposite sides of the nucleus. The actual situation,
which is described below, is more complex. PlotsW{x, —x) and W (x, 0) are shown in
figure 2 forZ = 0.25,0.3,0.35 ~ 2\% 0.4,0.5,0.6,0.7 ~ \i@ 0.8. The graph o (x, 0)

is deliberately asymmetric so that the left asymptd¥&—oo, 0) can be compared with the
minimum of W (x, —x) atx = 0. We now discuss this behaviour in more detail, noting that
all the qualitative features can also be verified analytically.
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Figure 3. Saddle point oW (x, y) for Z = 0.4 in the quadrant < 0,y > 0.

;11 <Z < ﬁi: The potential does have a pair of weak minima along the lire —x;
however, closer examination of the full two-dimensional potential shows that these are
not true minima, but saddle points o (x, y). The potential is repulsive at the origin
and only weakly attractive elsewhere.

2—% <Z< %: The potential is now attractive at the origin. However, as above, the two
weak minima on the ling = —x correspond to saddle points f(x, y).

1<z< %2: The two weak minima on the ling = —x have now coalesced into a
true (two-dimensional) minimum at the origin. However, this is only a local minimum.
W(0,0) > W(0, oo) so that the energy will decrease if one of the particles remains at
the origin while the other goes off to infinity. Figure 2 suggests that the minimum along
thex = 0 andy = 0 lines is too shallow to prevent one of the electrons from tunnelling
through to infinity. Thus, we expect resonances, but not bound states in this region.

Z > \/ié: The potential has a true minimum at the origin.

Thus, the behaviour of the potentidl(x, y) strongly suggests that, at least for sufficiently

large B, binding occurs foZ > -L a 0.7 and that the mechanism which permits this is the

V2

reduction in strength of the repulsion bys12 which permits both electrons to simultaneously

sit near the nucleus. The behaviour of the regularized potential model for a two-electron atom
in one dimension seems to be very different from that of classical Coulomb particles confined to
aline. The binding cut-off o, ~ 0.7 represents a very modest ‘binding enhancement’ when
compared with the value &, ~ 0.9 obtained in [4] for atwo-electron atom in three dimensions

in the absence of a magnetic field. (An ‘enhancement’ to the levekof®2 >~ 27 + 1 would
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requireZ. < 0.5.)

3. Kinetic energy and Lieb’s strategy

We now describe the elegant strategy used by Lieb [13] (see also section 3.8 of [6]) to show
that for real atoms the maximum number of electrons that can be bound is lesszthah 2
irrespective of permutational symmetry. The essence of Lieb’s argument is to show that one
can replace the variation ovér-electron wavefunction® (rq, ...7ry) by a variation over
density matrices of the form

N
C(ry,...7N; 81,...8y) = Z W PIY2W (e, ... rn) V(s )]Y2 W (51, - . . 8) (23)
j=1
wherev(r) > 0 is a strictly positive function which will be chosen later. Note that, even
though the functionsllv}/2 are not orthonormal, TFA = Zj([v(rj)]l/z\ll, Alv(r)]Y?w)

for any operatord. Despite the introduction of the function which will be chosen later, the

Y used inI” satisfies the same symmetry or domain constraints as the original minimization
problem.

It will be useful to describe Lieb’s argument in the rather general situation 8-particle
Hamiltonian,Hy with the structuredy = Hj,_,+K;+V;’ whereK; = | P; + A|? denotes the
kinetic energyHy,_, is the (Vv — 1)-electron Hamiltonian in which thgth electron is omitted
andV;, is a potential which describes the interaction of jtie electron with the rest of the
system. Lieb studiedly = H(N, Z, 0, 1) while we considerHy = h(N, Z, M). In our
case,

Vi =—2ZVx)+ Y 22V x; — xil). (24)
ke j
Now assume thakly actually has a bound state so that thereg&atisfyingHy Vo =
EoWq. This implies that fomnyfunctionv andanychoice ofj,

v(rj))HyWo(ry, ...7n) = Eqv(rj))Wo(rs, ... 7N) (25)
as well. Hence
(Wo, v(r;)HyWo) = Eo{Wo, v(r;)Wo). (26)

Then if 'y is the density matrix of the above form corresponding to the ground $tatand
v; denotes(r;)

N N
Eo(N)TrTo = Eo(N) Y (Wv; W) = TrToHy + Y [(¥v;K;W) — (v} WK v/2w)]

j=1 j=1

N
1/2 j j 1/2
= Z(v/ WL [H g+ Vi vy W)+ (WK, W)
7 =1
1/2

> Eo(N — D TrTo+ Y [(vi/2W, V)W) + (WvK;w)]. (27)
J

The inequality in (27) above follows from the variational principle fdf, ;. Although

(Wv; K ;W) neednotberealin general, a careful analysis of the argument above shows that when
W isan eigenstate dfy itis real because it can be written as the difference of two real quantities.

In Lieb’s original formulationy was chosen so that this real quantity satisfigd; K ;) > 0.

Then if ¥, (v/*WVjv}/?W) > 0 it follows that Eo(N) TrTo > Eo(N — 1) Tr I'g which
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contradicts the requirement for binding B§(N) < Eo(N — 1). This reduces the problem of
showing thatH (N, Z, 0, «) has no bound states in the absence of magnetic fields to that of
showing thafy"; (v;/>w v/ v}?®) > 0. However, in a constant magnetic field the continuum
begins atB + Eq(N — 1) so that a similar reduction would require the stronger condition
(‘l—’Vj KJ\IJ> > B.

In order to study Wv; K ;W) in more detail in different situations, it is convenient to write
v; asg? and observe that formally

(W2, iV, + APW) = ([iV; + Al (gW)g, iV, + Al (gW)g ™)
. . Vg |?
= 09, + Alew. 19, + Al - [ 1902
+ 2iRe(¥Vyg, [iVj + A](gW¥)). (28)
Note that the localization error- [ |g\If|2|%|2 = [|g¥|?Vg - V(g~1), shows a certain
symmetry betweeg andg~*. If we now letg = v¥/?, (28) implies

_ -
Re(Wv; K;W) = (W2 | K; — [2| | wv¥?), (29)
. J 2Vj J
For the typical choice = [V (r)] %, one hasvv(r)/v(r) = =V V ()/ V (r) which yields
I v, V; 2
_ 1/2 AS 1/2

in accordance with the symmetry betweeandg —! noted above. Because, as discussed above,
we will only be concerned with applications for whi¢rv; K ;W) is real we will henceforth
omit the Re . We now discuss several cases in more detail dsimglenote the dimension of

the space on whiclt; acts. (The original proof of Lieb used an argument which originated
with Benguria (see lemma 7.20 of [12]) in the spherically symmetric case to show directly
that Re{v ¥ (—A)W¥) > 0. The variant given here is due to Hoffman—Ostenhof [9]. For other
strategies see [5, 6, 10].)

e A =0,d > 3. Inthis case we are interestedvin= [V ()] ~* for potentials, (particularly
the usual Coulomb potenti& (r) = 1/|r|) which satisfy| VVV(S;H < 7 Thenk = —A
and (30) becomes

172 1 172
(W, K;W) = (Wy;(—A )W) > <\Ilvj/ , [—AJ- - W] w/ > > 0. (31)

e A #£0,d = 3. Inthis case we can only conclude from (29) that

S 12,2 12 | 02 Vv, |? 1/2
IV,v; 2
> B||\Ilv}/2||2—<\ll%\ll . (32)
Vj

We could instead have proceeded as in (31) above to ohtéin,K ;W) > 0, but we
cannot conclude thatv,; K ;¥) > B||\Ilv}/2||2. The kinetic energyP? = %22 in the

field direction is not able to control a three-dimensional potential, such&satising
from |%~"|2. Our one-dimensional models circumvents this problem because the choice
of product state involving Landau functions ensured thatﬂﬁe Pz2 terms took care of
the B, leaving P2 to deal with a one-dimensional potenti<’st1"[x)/2v(x)]2 as described

below.
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e A = 0,d = 1. In one dimensionA plays no role. Although we will still choose
v = [V(Ir)]~* with potentials which satisfy**|? < |1‘2 it is not true in one or two-

dimensions that-A — |2x|~? > 0. Instead we will treat~|%|2 as a potential in
d2 V/ . 2
(Wv;(—A,)W) = <x11u}/2, [—— - ' ;) } \yv}/2>. (33)

dsz 2V(Xj)
Now in one-dimension the everywhere negative potemi@"—ﬂz will always give rise
to a bound state of & — | X |2. Thus we can only conclude tha¥v;(—A )W) >
—e||\l/v}/2||2 where—e is the lowest eigenvalue of this operator. However, the bound

(W, (—A)HY) > —o|¥|? (34)

wherew = sup, [v'(x)[2/4v(x) will be more useful. Notice that, unlike the three-
dimensional case where the lower bound is zero, when applying this resHl te-
h(N, Z, M) we will need to take into account the fact the entire kinetic energy term is
multiplied by /M (or v/B).

4. Bound on the maximum negative ionization

We now apply Lieb’s strategy, which yieldéna(Z, 0) < 2Z + 1 for atoms without magnetic
fields, to our one-dimensional models for systems in strong magnetic fields. We obtain the
following result.

Theorem 1. The maximum number of electraNgay for which a Hamiltoniark (N, Z, B~/?)
of the form (16) has a bound state satistg.x < 2Z +1 +c+/B for some constant.

In the interesting casB = O(Z3) (which is the boundary of the LSY hyperstrong limit region
in [17]), this yields a bound of the forV,ax < 2Z + ¢Z¥?2, rather than a linear one of the
form Nmax < ¢Z or the expected optim@¥max < 2Z + 0(Z).

We apply the strategy of section 3 wifliy = A(N, Z, M) andv = 1/V. In this case,
the analysis of expectations Uﬁt is straightforward becaus{el/ Z\If Vv 1/ 2y ) = (¥, &) .

> e v e) = ZZ||\IJ||2+ZZ (W, 272y (2712, —xk|)V(xj) Ly)

J Jk#j
= —NZ||w||2+Z (W, 272V 272 )x; — DIV () H+ V) ). (35)
J<k
Thus,if the potential satisfies
272V @2 x; — DV T+ VT > 1 (36)
then
Y0PV A > [-NZ+ NN = /2] ). (37)

j
For the cut-off potentiaV (x) = 1/(|x|+1), (36) follows easily from the triangle inequality
since
22V w —xPI Tt = lw — x|+ 22w+ 2Y2 + x|+ 22 = [V ()] T+ [V () .

For the regularized potentid(x) we will use instead the convexity of(x) = [Vo(x)] L.
(Because the proof [27, 28] of this essential fact, although elementary, is rather delicate and
not readily accessible, we provide a sketch in the appendix.) Thus we find,

Vo)™ + [Vo(x) ™ = 2[Vo(lw — x|/2)]7 = 2Y2[Vo(2 Y2 |w — x| 1 (38)
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where the first inequality useidh(x) = Vo(|x|) as well as the convexity ok (x) = [Vo(x)] 2
and the second inequality follows from
o0 tme—f o0 tme—f
V@YV =m] | = dt =2Y ]t | ———
)= lml] 0 /y2/2+¢ L] 0 y2+2t

with y = 272w — x| andm = 0.

Thus we can conclude that, for both the cut-off potenidal(x) = 1/(|x| + 1) and the
regularized potentialp(x), the one-dimensional Hamiltonid(N, Z, M) satisfies

TrToh(N, Z, M) > Eo(N, Z, M) TrTo + [-NZ + N(N — 1)/2 — Noo/M] || W 2. (39)

The second term in (39) will be positive (Vv — 1)/2 > Z + w/M. For both potentials,
w = sup, [v'(x)|?/4v(x) is given by lim_o[v'(x)|?/4v(x). This yields,we = 0.25 for
the cut-off potential andvy = 7~%2 < 0.18 for the regularized potentidly(x). The
latter follows fromw = v(0)®> = 7~%? and the fact that, as shown in the appendix,
[V (x)|?/4v(x) = v(x)[v(x) — |x|]? is decreasing fox > 0. Thus, in both cases, the
second term in (39) will be positive iV > 2Z + 1 + 1/2M. Since binding implies
TrToh(N,Z, M) < Eo(N,Z, M) TrTg and M is proportional toB~1/2, we have shown
that one can find a constantsuch that our model one-dimensional system does not have
bound states iV > 2Z + 1 +c+/B Of Nyax < 2Z + 1 +c+/B.

Although this bound is not optimal, it should be remembered that we are analysing a
Hamiltonian with the structure

h(N,Z,B™Y?) = h(N — 1, Z, B"Y?) + BY2K; + Vi (x)) (40)

dr < 2Y2V,,.(y)

and that the factox/B multiplying the kinetic energy is something of a two-edged sword.
On the one hand, it raises the energy of the effective one-electron HamiltBMAK, +

[ Vintlr (x1, x2, . . ., xy)|?dxs ... dxy; on the other, it multiplies any error arising from the
kinetic energy—whether using Lieb’s strategy or the Ruskai—Sigal localization approach
[6,21, 22, 26]—by+/B. Since such correction terms are typically negative, the result of
such treatments is to perversely magnify the negative error associated with a positive term
otherwise expected to raise the energy.
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Appendix. Convexity and properties of 1/ Vp(x)

Because (x) = 1/ Vo(x) is nearly linear (see figure Al), the proof of its convexity is somewhat
delicate. It will follow from the upper bound in the following pair of inequalities, which are
of some interest in their own right:

3x +v/x2+4
—<
4

v(x)

2
L ZxtVat+3 V3+3 (1)
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6+

Figure A1. Comparison of 1Vp(x) andx forx > 0.

We now restrict attention t® > 0 and define
k

8(x) (k— Dx +/x2+ k
so that (41) is equivalent to
ga(x) > Vo(x) > ga(x). (43)
which is an improvement on the classical inequalities of Komatsu [11]. The upper bound and
convexity were established independently by Wirth [28] and by Szarek and Werner [27]; the
proof of lower bound which follows was communicated to the authors by E Werner.
We now observe thats(0) = /7 andVj; satisfies the differential equation

(42)

Vo(x) = 2[xVo(x) — 1] (44)
and look for analogous behaviour f@. Since g (x) = —[gk(x)]z% :2‘2”‘ and
xgr(x) —1= ﬁgk(x), one can verify that

ko (k—DVxZ+k+x 2%

g (x) > 2[xgr(x) — 1] =

Vxl+k(k—Dx++/x2+k = x+/x2+k
> (k—2)x%+k(k —3) < (k — 2)xvVx2+k
= x%(k —2)(k — 4 +k(k —3)? < 0. (45)
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Figure A2. Graphs showinga(x) > Vo(x) > g3(x) for x > 0.

Fork = 3, we use the first equivalence to conclude frofn < x+/x2+ 3 thatgj(x) >
2[xga(x) — 1]; for k = 4, we use the second to concludé — 3)> > 0 = g,(x) <
2[xga(x) — 1].

Fork = 3, leths(x) = Vo(x) — g3(x). Itis easily to verify thati3(0) = /7 — JV3>0
and that lim_ . |k3(x)| = 0. The first equivalence in (45) implies thet < xv/x2+3 =
g5(x) > 2[xga(x) — 1] so thathy(x) < 2x[Vo(x) — g3(x)] = 2xh3(x)Vx. Now suppose that
for somex = a, ha(a) < 0. Thenhj(a) < 0 and it follows thathz(x) is decreasing for
x > a, which contradicts lim_, . #3(x) = 0. This proves the lower bound in (43). The upper
bound is proved similary [27] except that one now shows #at) = g4(x) — Vo(x) > O.

It is interesting to note that the upper bound in (43) is optimal, but the lower bound can be
improved [23] tog,, (x) < Vo(x). The tightness of these bounds is evident in figure A2.

In order to use this to establish the convexity wfc), we note (44) implies that
v(x) = [Vo(x)] ! satisfies

V' (x) = 2v(x)[v(x) — x]. (46)
Then
Vix) =4 —20'x —2v =4 —x)2v —x) — 2v
=8[(v— %)c)2 — 1—16()52 + 4)]
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— 8 [(v(x) — 1/ga(x) + Va2 + 4)2 - (%JXZ + 4)2] . 47)
Since (41) implies (x) > 1/g4(x), we can conclude that(x) > 0.
To show thafv’(x)|2/4v(x) = v(x)[v(x)—|x|]?is decreasing far > 0, we note that (46)

yields

di[v(v — )% = 2v(v — 0)[3V% — dvx +x%2 — 1]
x

v\ x?+3
>_x <0

=6v(v —x) (v—g 5

and (41) implies that the expression in square brackets is negative.

It is useful to have bounds on the extent to whiglk) and Vy(x) deviate from|x| and
the Coulomb potential, respectively, whenis large. The upper bound in (41) implies
[vx) — |x]] < ga(x) — x < 1/2|x| while the lower bound yield$Vo(x) — 1/|x|| <
1/x—g3(x) < 1/2x3. The latter can also be proved directly from the integral representation (6).
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