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Abstract. We consider a one-dimensional model for many-electron atoms in strong magnetic
fields in which the Coulomb potential and interactions are replaced by one-dimensional
regularizations associated with the lowest Landau level. For this model we show that the maximum
number of electronsNmax satisfies a bound of the formNmax< 2Z +1+c

√
B whereZ denotes the

charge of the nucleus,B the field strength andc is a constant. We follow Lieb’s strategy in which
convexity plays a critical role. For the caseN = 2 with fractional nuclear charge, we also discuss
the critical valueZc at which the nuclear charge becomes too weak to bind two electrons.

1. Introduction

It is well known that systems in strong magnetic fields behave like systems in one dimension,
i.e., a strong magnetic field confines the particles to Landau orbits orthogonal to the field,
leaving only their behaviour in the direction of the field subject to significant influence by
a static potential. Therefore, a better understanding of one-dimensional systems is essential
to understanding the behaviour of systems in strong magnetic fields. Although many one-
dimensional systems, including that of a hydrogen atom with a single electron [2, 8], have
been thoroughly studied, relatively little is known about multi-particle atoms confined to one
dimension.

In this paper we study the question of bounds on the maximum excess negative charge
using one-dimensional models of many-electron atoms. Because our goal is an understanding
of the behaviour in one dimension, we do not deal with the question of accuracy of our one-
dimensional models as approximations to, or reductions from, real three-dimensional atoms.
However, we sketch such a reduction as motivation for the models considered.

There is some question as to the proper replacement for the Coulomb potential in one
dimension [8]. The potentialV (x) = 1/|x| is so singular that the one-dimensional Hamiltonian
−1 − 1/|x| is not even essentially self-adjoint. Fortunately, an electron in a Landau orbit is
attracted to a nucleus with chargeZ, not by a potential of the form−Z/|x|, but by a regularized
potential which is finite at the nucleus. However, the corresponding regularization of the
electron–electron interaction is more complicated unless both electrons have zero angular
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momentum in the direction of the field. In that case, the regularized interaction has a simple
form which is the basis for our model.

There is an extensive literature on atoms in magnetic fields. Interest in atoms in extremely
strong fields, which began in the 1970s after the discovery of pulsars, has recently been
renewed in the 1990s, culminating in the comprehensive work of Lieb, Solovej and Yngvason
(LSY) [16–18,29]. For a discussion of early work on approximations for atoms in extremely
strong magnetic fields we refer the reader to the insightful paper of Rauet al [19] and to the
review by Ruderman [20]. References to later work are given in the introduction to [17] and a
summary of the work of LSY [17,18] is given in [16,29]. Rigorous work on atoms in magnetic
fields began with the work of Avron, Herbst and Simon (AHS) [1–3]. LSY [16–18,29] not only
analysed extensions of Thomas–Fermi theory in five distinct regions, but showed that these
regions suffice to give the correct asymptotics for the exact Hamiltonian. In particular, they
showed that the maximum number of electronsNmax(Z, B) which can be bound to a nucleus
of chargeZ in a constant magnetic field of strengthB satisfies lim infNmax(Z, B)/Z > 2 as
Z → ∞ andB/Z3 → ∞. This should be compared with asymptotic neutrality [7, 15, 25],
i.e. limZ→∞Nmax(Z, 0)/Z = 1, for atoms without magnetic fields. We hope that the analysis
of the simple model in this paper is a modest first step toward a better understanding of the
mechanism by which extremely strong magnetic fields bind an ‘extra’Z electrons, as well as
the conjectured converseNmax(Z, B) 6 2Z.

The full three-dimensional Pauli Hamiltonian for anN -electron atom with nuclear charge
Z in a constant magnetic field of strengthB, acting onHN , the n-fold tensor product of
L2(R3)⊗C2, is

H(N,Z,B, α) =
N∑
j=1

[|Pj +A|2 + σj ·B − Z/|rj |] +
∑
j<k

α/|rj − rk| (1)

whereA is a vector potential such that∇×A = B andα is a coupling constant introduced
for convenience in discussing scaling. If the spin-coupling term is omitted, it often suffices to
consider the corresponding scalar Hamiltonian, which we denoteH(N,Z,B, α), as an operator
acting only on [L2(R3)]N or the ‘space’ portion ofHN . We will choose our coordinate system
so that the fieldB = (B, 0, 0) is in thex-direction and the gauge so that 2A = B × r. The
Hamiltonian (1) satisfies the scaling relationH(N,Z,B,1) = BH(N,ZB−1/2, 1, B−1/2),
i.e., we can scale out the field strength by replacing the nuclear chargeZ by ZB−1/2 and
reducing the electron–electron interaction byB−1/2. Alternatively, we could have included
the electron charge unite explicitly and replacede by eB−1/4.

We letE0(N,Z,B, α) denote the infimum of the spectrum of the scalar Hamiltonian
H(N,Z,B, α) defined above. It is well known that the spectrum of the ‘free’ Hamiltonian
|Pj +A|2 is [B,∞], that the spectrum of|Pj +A|2+σj ·B = [σj ·(Pj +A)]2 is [0,∞) and that
the lowest Landau level has energyB with infinite degeneracy indexed bym = 0, 1, 2, 3, . . .
corresponding to angular momentum−m quantized in the field direction. Therefore, the
continuous spectrum ofH(N,Z,B, α) is [B + E0(N − 1, Z, B, α),∞), i.e., the continuum
begins atB plus the ground state energy forN − 1 electrons. Thus the question of whether
or notH(N,Z,B, α) has a bound state is determined by whether or not some test function9

satisfies

〈9,H(N,Z,B, α)9〉 < [B +E0(N − 1, Z, B, α)]‖9‖2. (2)

For the full HamiltonianH(N,Z,B, α), the continuous spectrum is [E0(N−1, Z, B, α),∞)
which implies thatH(N,Z,B, α) has a bound state if and only if there is aΨ ∈ HN for which

〈Ψ,H(N,Z,B, α)Ψ〉 < E0(N − 1, Z, B, α)‖Ψ‖2. (3)
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For the remainder of this paper we will omit explicit consideration of spin (although we will be
able to draw some conclusions indirectly. See the remark after equation (13)). Our methods
cannot handle theσ ·B term explicitly and the inclusion of spin in the wavefunction does not
affect the remaining results in any essential way.

We now consider the the three-dimensional energy minimization problem restricted to
functions whose behaviour orthogonal to the field is described entirely by product functions
in which all electrons are confined to the lowest Landau level, i.e., we restrict toN -electron
functions9 of the form9m1...mN = 8(x1 . . . xn)

∏N
k=1 γ

B
mk
(rk, θk) where

γ Bm (r, θ) = [πm!]−1/2B(m+1)/2rme−Br
2/2e−imθ

denotes the Landau level with energyB and angular momentum−m. (Note that we are using
cylindrical coordinates(x, r, θ)with r =

√
y2 + z2 so that|r| =

√
x2 + r2.) Such expectations

satisfy

〈9m1...mN ,H(N,Z,B,1)9m1...mN 〉 = 〈9m1...mN , Ĥ (N,Z,B,1)9m1...mN 〉 +NB
= B〈9m1...mN , Ĥ (N,ZB

−1/2, 1, B−1/2)9m1...mN 〉 +NB (4)

where

Ĥ (N,Z,B, α) =
N∑
j=1

[−|P xj |2 − Z/|rj |] +
∑
j<k

α/|rj − rk|. (5)

For each fixed choice ofm1 . . . mN the minimization problem can be reduced to a one-
dimensional problem for the Hamiltonian̂Hm1...mN

x (N,Z,B, α) in which the kinetic energy
has the usual− d2

dx2 form and the potentials 1/|rj | and 1/|rj − rk| are replaced by regularized
potentials denoted byV Bmj (xj ) andWB

mj ,mk
(|xj − xk|), respectively:

V Bm (x) =
∫ ∫
|γm|2/|r| dy dz

= Bm+1

m!

∫ ∞
0

r2me−Br
2

√
x2 + r2

r dr

= [m!]−1
∫ ∞

0

ume−u√
x2 + u/B

du

= 2Bm+1

m!
eBx

2
∫ ∞
|x|
(t2 − x2)me−Bt

2
dt (6)

which satisfies the scaling relationV Bm (x) =
√
BV 1

m(
√
Bx) as one would expect from the

scaling properties ofH(N,Z,B, α). WB
mj ,mk

is defined analogously; we postpone discussion
of its explicit form. That the regularizationsVm,B(x) are important for atoms in magnetic fields
goes back at least to Schiff and Snyder [24] in 1939 and played an important role in the AHS
study [2] of hydrogen. In the casem = 0 andB = 1, (6) can be rewritten as

V0(x) =
√
πex

2
[1− erf(x)]

=
∫ ∞

0

e−u√
x2 + u

du = 2ex
2
∫ ∞
x

e−t
2
dt. (7)

A comparison with the usual Coulomb potential is given in figure 1.
We now describe the correspondence between a restricted three-dimensional minimization

problem for a Hamiltonian with a magnetic field, namely,

E
m1...mN
0 (N,Z,B, α) = inf

9m1...mN

〈9m1...mN ,H(N,Z,B, α)9m1...mN 〉 (8)
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Figure 1. Comparison of the potentials (reading from the top down)− 1
|x|+1,−V0(x), and− 1

|x| .

and the one-dimensional minimization problem

E
m1...mN
0,x (N,Z,B, α) = inf

8
〈8, Ĥm1...mN

x (N,Z,B, α)8〉 (9)

where

Ĥm1...mN
x (N,Z,B, α) =

N∑
j=1

[
− d2

dx2
j

− ZV Bmj (xj )
]

+ α
∑
j<k

WB
mj ,mk

(|xj − xk|) (10)

in which no magnetic field is explicitly present. Since

〈9m1...mN ,H(N,Z,B, α)9m1...mN 〉 = 〈8, Ĥm1...mN
x (N,Z,B, α)8〉 +NB (11)

we can conclude that

〈9m1...mN ,H(N,Z,B, α)9m1...mN 〉 > E
m1...mN−1

0 (N − 1, Z, B, α) +B

⇐⇒ 〈8, Ĥm1...mN
x (N,Z,B, α)8〉 > E

m1...mN−1

0,x (N − 1, Z, B, α). (12)

Thus, we have reduced somewhat artificial problem of whether or not an atom in magnetic
field B whose electrons have prescribed angular momentum corresponding tom1 . . . mN has
a bound state to that of whether or not a related one-dimensional system has a bound state.
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Although, we do not consider spin coupling explicitly, it does follow from (3) that we can also
conclude that

〈Ψm1...mN ,H(N,Z,B, α)Ψm1...mN 〉 > E
m1...mN−1

0 (N − 1, Z, B, α)

⇐⇒ 〈8, Ĥm1...mN
x (N,Z,B, α)8〉 > E

m1...mN−1

0,x (N − 1, Z, B, α) (13)

whereΨm1...mN is chosen so that all components inC2 correspond to spin ‘down’. (This
observation, which is a fortuitous consequence of the physical fact that the coefficient ofσ ·B
is exactly 1, was pointed out to us by J P Solovej.)

We now consider the regularization of the interaction in the special case in which
mj = mk = 0. Recall thatγ B0 (y, z) = Bπ−1e−B(y

2+z2)/2 = Bπ−1e−Br
2/2.

WB
0,0(|x1− x2|) =

∫ ∫
dy1 dz1

∫ ∫
dy2 dz2

|γ B0 (y1, z1)|2|γ B0 (y2, z2)|2√
(x1− x2)2 + |(y1, z1)− (y2, z2)|2

= B
∫ ∞

0
dt

2te−Bt
2√

(x1− x2)2 + 2t2
= 1√

2
V B0

( |x1− x2|√
2

)
(14)

where we have made the change of variables

s = 1√
2

[(y1, z1) + (y2, z2)] t = 1√
2

[(y1, z1)− (y2, z2)]

with s = |s|, t = |t|, and used the fact that

|γ B0 (y1, z1)|2|γ B0 (y2, z2)|2 = B2π−2e−B(r
2
1+r2

2 ) = B2π−2e−B(s
2+t2) = |γ B0 (s)|2|γ B0 (t)|2.

Thus, the exceedingly simple relationWB
0,0(|x1 − x2|) = 2−1/2V B0 (2

−1/2|x1 − x2|) follows

from the invariance of|γ B0 (s)|2|γ B0 (t)|2 under the transformation ofs, t to (s± t)/√2. This
unusual invariance, corresponding to the mixing of coordinates of two particles, will not hold
if m 6= 0. Symmetrizing the product or replacing9m1...mN by an arbitrary element of the
projection onto the lowest Landau level, would require consideration of exchange terms as
well. Therefore, we will only study models corresponding to constraining all electrons to have
angular momentum zero. Since90...0 is then symmetric with respect to exchange of(yj , zj )

with (yk, zk), it will have the same permutational symmetry as8(x1 . . . xN).
Despite the severity of the restriction tom = 0, our model seems well-suited to study of

the bounds on the negative ionization. Integration by parts of (6) easily yields

V B
m+1(x) 6 V Bm (x) 6 V B0 (x) 6 1/|x| (15)

with the difference greatest at the origin and all potentials satisfyingV Bm (x) ≈ 1/|x| for largex.
Moreover, for any choice ofmj ,mk whenever|xj−xj | is large,WB

mj ,mk
(|xj−xj |) ≈ 1/|xj−xj |

as well. Thus it appears unlikely that placing some electrons in Landau levels withm 6= 0 will
allow binding ifm = 0 does not.

With this heuristic background, we study models forN -electron atoms in one-dimension
corresponding to Hamiltonians of the form

h(N,Z,M) = MĤ 0...0
x (N,Z,M−2, 1)

=
N∑
j=1

[
− 1

M

d2

dx2
− ZV0(xj )

]
+
∑
j<k

1√
2
V0

( |xj − xk|√
2

)
(16)

with the ‘mass’M proportional toB−1/2. Because of the scaling relationH(N,Z,B,1) =
BH(N,ZB−1/2, 1, B−1/2), the only role of the field strength in the one-dimensional situation
is to reduce the mass by a factor ofB−1/2. Thus, for simplicity, we have set bothB = 1 and
the coupling constantα = 1 leaving the field strength implicit in the massM.
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As observed in [2], the regularized potentials satisfy

1√
(m + 1)B + |x| 6

1√
(m + 1)B + |x|2

6 V Bm (x) 6
1

|x| . (17)

The cut-off potentialVcut(x) = 1/(|x| + 1) is also of some interest. Haines and Roberts [8]
have given explicit solutions to the eigenvalue problem for the hydrogenic Hamiltonian
−1− Vcut(x). By the above remark,Vcut(x) 6 V 1

0 (x) 6 1/|x|.
In sections 2 and 3, we study Hamiltonians of the form (16) in the two casesV = Vcut and

V = V0. For both models we show that the existence of a bound state impliesN < 2Z+1+c
√
B.

2. Two-electron systems

We now discuss in more detail the behaviour of the one-dimensional Hamiltonian (16) when
the number of electrons isN = 2. Although our discussion is descriptive and non-rigorous,
we believe the insights are useful. The two-electron Hamiltonian can be written in the form.

h(2, Z, B−1/2) = −
√
B

[
d2

dx2
1

+
d2

dx2
2

]
+W(x1, x2) (18)

where

W(x1, x2) = −ZV0(x1)− ZV0(x2) +
1√
2
V0

( |x1− x2|√
2

)
. (19)

Consider a classical system of three particles on a line with charges−1, +Z,−1 interacting
with the usual inverse square Coulomb force (or, equivalently,qiqj /|xi − xj | potential). The
only potentially stable configuration is one in which the particles are arranged symmetrically
with the two negatively charged particles on opposite sides of, and the same distance from, the
positive ‘nucleus’ as shown in figure 1. Even in this case, the system is stable only forZ = 1

4.
ForZ < 1

4, both ‘electrons’ will move off to infinity, while forZ > 1
4, the ‘electrons’ collapse

into the centre. This suggests that forZ > 1
4 one might be able to show that the system binds

by using a trial function9a in which the two electrons are localized on opposite sides of the
nucleus at a distancea sufficiently far from the centre thatV0(±a) ≈ 1/a. (Permutational
symmetry is not relevant; if such a trial function binds, then a bosonic system will also bind.)
This picture would require that1xi < a for each electron so that, by the uncertainty principle,
the kinetic energy satisfies〈9a[− d2

dx2
1
]9a〉 > 1/a2. Thus we estimate

〈9ah(2, Z, B−1/2)9a〉 > 2

√
B

a2
− 2Z

a
+

1

2a
. (20)

Minimizing overa yieldsamin = 2
√
B/(Z − 1

4) and

〈9ah(2, Z, B−1/2)9a〉 > −
(Z − 1

4)
2

2
√
B

. (21)

The continuous spectrum begins at the ground state energy of the corresponding one-electron
Hamiltonianh(1, Z, B−1/2) = −√B d2

dx2 − ZV0(x) which Avron et al [2] showed is given

asymptotically (for largeB) by E0(1, Z, B−1/2) = − Z2√
B
(log Z2√

B
)2. Thus, binding would

require (
Z − 1

4

)2

> 2Z2

(
log

Z√
B

)2

. (22)
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Figure 2. W(x,−x) and W(x, 0) for (reading from the top down)Z =
0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8. The left graph,W(x,−x), describes the potential
when the electrons are on opposite sides of the nucleus with each a distancex away. The right
graph,W(x, 0), describes the potential when one electron is fixed at the origin; the left asymptote
then corresponds to the other electron moving to infinity.

This is obviously false for largeB, which suggests that the uncertainty principle prevents the
corresponding one-dimensional system from binding, even when the classical system collapses.
BecauseM ∼ B−1/2, large field strength corresponds to small mass, i.e., as the field strength
increases, the electrons become ‘lighter’ and more difficult to localize. Thus we must seek a
different mechanism to explain binding of a one-dimensional two-electron atom.

Fortunately, our model provides an alternative mechanism for binding. The regularization
of the potential at the origin combined with the effective reduction of the interaction by
1/
√

2, permits both electrons to be close to the nucleus forZ > 1/23/2 in the sense that
−2ZV0(0) + 2−1/2V0 < 0. Of course, the uncertainty principle also precludes binding with a
trial function in which both electrons are exactly at the centre. Nevertheless, we believe that
the mechanism for binding is that the effective reduction in the interaction permits the two
electrons to overlap strongly near the nucleus.

The Hamiltonian (18) can be regarded as describing either two particles in one-dimension
or one particle in the field of the two-dimensional potentialW(x, y) given by (19). Regardless
of our viewpoint, the continuous spectrum will begin at the AHS [2] estimate of− Z2√

B
(log Z2√

B
)2.

Since this is close to zero for largeB, we will regardW(x, y) as attractive where it is negative
and repulsive where it is positive. One might expectW(x, y) to have its minimum on the line
y = −x, corresponding to electrons on opposite sides of the nucleus. The actual situation,
which is described below, is more complex. Plots ofW(x,−x) andW(x, 0) are shown in
figure 2 forZ = 0.25, 0.3, 0.35 ≈ 1

2
√

2
, 0.4, 0.5, 0.6, 0.7 ≈ 1√

2
, 0.8. The graph ofW(x, 0)

is deliberately asymmetric so that the left asymptote,W(−∞, 0) can be compared with the
minimum ofW(x,−x) at x = 0. We now discuss this behaviour in more detail, noting that
all the qualitative features can also be verified analytically.
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Figure 3. Saddle point ofW(x, y) for Z = 0.4 in the quadrantx < 0, y > 0.

• 1
4 < Z < 1

2
√

2
: The potential does have a pair of weak minima along the liney = −x;

however, closer examination of the full two-dimensional potential shows that these are
not true minima, but saddle points forW(x, y). The potential is repulsive at the origin
and only weakly attractive elsewhere.
• 1

2
√

2
< Z < 1

2: The potential is now attractive at the origin. However, as above, the two
weak minima on the liney = −x correspond to saddle points ofW(x, y).
• 1

2 < Z < 1√
2
: The two weak minima on the liney = −x have now coalesced into a

true (two-dimensional) minimum at the origin. However, this is only a local minimum.
W(0, 0) > W(0,∞) so that the energy will decrease if one of the particles remains at
the origin while the other goes off to infinity. Figure 2 suggests that the minimum along
thex = 0 andy = 0 lines is too shallow to prevent one of the electrons from tunnelling
through to infinity. Thus, we expect resonances, but not bound states in this region.
• Z > 1√

2
: The potential has a true minimum at the origin.

Thus, the behaviour of the potentialW(x, y) strongly suggests that, at least for sufficiently
largeB, binding occurs forZ > 1√

2
≈ 0.7 and that the mechanism which permits this is the

reduction in strength of the repulsion by 1/
√

2 which permits both electrons to simultaneously
sit near the nucleus. The behaviour of the regularized potential model for a two-electron atom
in one dimension seems to be very different from that of classical Coulomb particles confined to
a line. The binding cut-off ofZc ≈ 0.7 represents a very modest ‘binding enhancement’ when
compared with the value ofZc ≈ 0.9 obtained in [4] for a two-electron atom in three dimensions
in the absence of a magnetic field. (An ‘enhancement’ to the level of 2= N > 2Z + 1 would
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requireZc < 0.5.)

3. Kinetic energy and Lieb’s strategy

We now describe the elegant strategy used by Lieb [13] (see also section 3.8 of [6]) to show
that for real atoms the maximum number of electrons that can be bound is less than 2Z + 1
irrespective of permutational symmetry. The essence of Lieb’s argument is to show that one
can replace the variation overN -electron wavefunctions9(r1, . . . rN) by a variation over
density matrices of the form

0(r1, . . . rN ; s1, . . . sN) =
N∑
j=1

[ν(rj )]1/29(r1, . . . rN)[ν(sj )]
1/29(s1, . . . sN) (23)

whereν(r) > 0 is a strictly positive function which will be chosen later. Note that, even
though the functions9ν1/2

j are not orthonormal, Tr0A = ∑
j 〈[ν(rj )]1/29,A[ν(rj )]1/29〉

for any operatorA. Despite the introduction of the functionν, which will be chosen later, the
9 used in0 satisfies the same symmetry or domain constraints as the original minimization
problem.

It will be useful to describe Lieb’s argument in the rather general situation of anN -particle
Hamiltonian,HN with the structureHN = Hj

N−1 +Kj +V jint whereKj = |Pj +A|2 denotes the

kinetic energy,Hj

N−1 is the (N − 1)-electron Hamiltonian in which thej th electron is omitted

andV j

int is a potential which describes the interaction of thej th electron with the rest of the
system. Lieb studiedHN = H(N,Z,0, 1) while we considerHN = h(N,Z,M). In our
case,

V
j

int = −ZV (xj ) +
∑
k 6=j

2−1/2V (2−1/2|xj − xk|). (24)

Now assume thatHN actually has a bound state so that there is a90 satisfyingHN90 =
E090. This implies that forany functionν andanychoice ofj ,

ν(rj )HN90(r1, . . . rN) = E0ν(rj )90(r1, . . . rN) (25)

as well. Hence

〈90, ν(rj )HN90〉 = E0〈90, ν(rj )90〉. (26)

Then if00 is the density matrix of the above form corresponding to the ground state90, and
νj denotesν(rj )

E0(N)Tr 00 = E0(N)

N∑
j=1

〈9νj9〉 = Tr 00HN +
N∑
j=1

[〈9νjKj9〉 − 〈ν1/2
j 9Kjν

1/2
j 9〉]

=
∑
j

〈ν1/2
j 9, [Hj

N−1 + V jint]ν
1/2
j 9〉 +

N∑
j=1

〈9νjKj9〉

> E0(N − 1)Tr 00 +
∑
j

[〈ν1/2
j 9, V

j

intν
1/2
j 9〉 + 〈9νjKj9〉]. (27)

The inequality in (27) above follows from the variational principle forHj

N−1. Although
〈9νjKj9〉need not be real in general, a careful analysis of the argument above shows that when
9 is an eigenstate ofHN it is real because it can be written as the difference of two real quantities.
In Lieb’s original formulation,ν was chosen so that this real quantity satisfied〈9νjKj9〉 > 0.
Then if

∑
j 〈ν1/2

j 9V
j

intν
1/2
j 9〉 > 0 it follows thatE0(N)Tr 00 > E0(N − 1)Tr 00 which
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contradicts the requirement for binding ofE0(N) < E0(N − 1). This reduces the problem of
showing thatH(N,Z,0, α) has no bound states in the absence of magnetic fields to that of
showing that

∑
j 〈ν1/2

j 9V
j

intν
1/2
j 9〉 > 0. However, in a constant magnetic field the continuum

begins atB + E0(N − 1) so that a similar reduction would require the stronger condition
〈9νjKj9〉 > B.

In order to study〈9νjKj9〉 in more detail in different situations, it is convenient to write
νj asg2 and observe that formally

〈9g2, |i∇j +A|29〉 = 〈[i∇j +A](g9)g, [i∇j +A](g9)g−1〉

= 〈[i∇j +A]g9, [i∇j +A](g9)〉 −
∫
|g9|2

∣∣∣∣∇gg
∣∣∣∣2

± 2iRe〈9∇g, [i∇j +A](g9)〉. (28)

Note that the localization error,− ∫ |g9|2| ∇g
g
|2 = ∫ |g9|2∇g · ∇(g−1), shows a certain

symmetry betweeng andg−1. If we now letg = ν1/2, (28) implies

Re〈9νjKj9〉 =
〈
9ν

1/2
j ,

[
Kj −

∣∣∣∣∇j νj2νj

∣∣∣∣2
]
9ν

1/2
j

〉
. (29)

For the typical choiceν = [V (r)]−1, one has∇ν(r)/ν(r) = −∇V (r)/V (r) which yields

Re〈9νjKj9〉 =
〈
9ν

1/2
j ,

[
Kj −

∣∣∣∣∇jVj2Vj

∣∣∣∣2
]
9ν

1/2
j

〉
(30)

in accordance with the symmetry betweeng andg−1 noted above. Because, as discussed above,
we will only be concerned with applications for which〈9νjKj9〉 is real we will henceforth
omit the Re . We now discuss several cases in more detail usingd to denote the dimension of
the space on whichKj acts. (The original proof of Lieb used an argument which originated
with Benguria (see lemma 7.20 of [12]) in the spherically symmetric case to show directly
that Re〈ν9(−1)9〉 > 0. The variant given here is due to Hoffman–Ostenhof [9]. For other
strategies see [5,6,10].)

• A = 0,d > 3. In this case we are interested inν = [V (r)]−1 for potentials, (particularly
the usual Coulomb potentialV (r) = 1/|r|) which satisfy| ∇V (r)

V (r)
| 6 1

|r| . ThenK = −1
and (30) becomes

〈9νjKj9〉 = 〈9νj (−1j)9〉 >
〈
9ν

1/2
j ,

[
−1j − 1

4|r|2
]
9ν

1/2
j

〉
> 0. (31)

• A 6= 0,d = 3. In this case we can only conclude from (29) that

〈9νjKj9〉 > B‖9ν1/2
j ‖2 −

〈
9ν

1/2
j ,

[
∂2

∂x2
j

−
∣∣∣∣∇j νj2νj

∣∣∣∣2
]
9ν

1/2
j

〉

> B‖9ν1/2
j ‖2 −

〈
9
|∇j νj |2

4νj
9

〉
. (32)

We could instead have proceeded as in (31) above to obtain,〈9νjKj9〉 > 0, but we
cannot conclude that〈9νjKj9〉 > B‖9ν1/2

j ‖2. The kinetic energyP 2
x = ∂2

∂x2
j

in the

field direction is not able to control a three-dimensional potential, such as 1/r2 arising
from | ∇j νj2νj

|2. Our one-dimensional models circumvents this problem because the choice

of product state involving Landau functions ensured that theP 2
y + P 2

z terms took care of
theB, leavingP 2

x to deal with a one-dimensional potential [V ′(x)/2V (x)]2 as described
below.
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• A = 0,d = 1. In one dimension,A plays no role. Although we will still choose
ν = [V (|r|)]−1 with potentials which satisfy|V ′(x)

x
|2 < 1

|x|2 it is not true in one or two-

dimensions that−1− |2x|−2 > 0. Instead we will treat−| V ′2V |2 as a potential in

〈9νj (−1j)9〉 =
〈
9ν

1/2
j ,

[
− d2

dx2
j

−
∣∣∣∣ V ′(xj )2V (xj )

∣∣∣∣2
]
9ν

1/2
j

〉
. (33)

Now in one-dimension the everywhere negative potential−| V ′2V |2 will always give rise

to a bound state of− d2

dx2 − | V ′2V |2. Thus we can only conclude that〈9νj (−1j)9〉 >
−ε‖9ν1/2

j ‖2 where−ε is the lowest eigenvalue of this operator. However, the bound

〈9νj (−1j)9〉 > −ω‖9‖2 (34)

whereω = supx |ν ′(x)|2/4ν(x) will be more useful. Notice that, unlike the three-
dimensional case where the lower bound is zero, when applying this result toHN =
h(N,Z,M) we will need to take into account the fact the entire kinetic energy term is
multiplied by 1/M (or

√
B).

4. Bound on the maximum negative ionization

We now apply Lieb’s strategy, which yieldsNmax(Z, 0) < 2Z + 1 for atoms without magnetic
fields, to our one-dimensional models for systems in strong magnetic fields. We obtain the
following result.

Theorem 1. The maximum number of electronsNmax for which a Hamiltonianh(N,Z,B−1/2)

of the form (16) has a bound state satisfiesNmax< 2Z + 1 +c
√
B for some constantc.

In the interesting caseB = O(Z3) (which is the boundary of the LSY hyperstrong limit region
in [17]), this yields a bound of the formNmax < 2Z + cZ3/2, rather than a linear one of the
formNmax< cZ or the expected optimalNmax< 2Z + o(Z).

We apply the strategy of section 3 withHN = h(N,Z,M) andν = 1/V . In this case,
the analysis of expectations ofV jint is straightforward because〈ν1/2

j 9, V ν
1/2
j 9〉 = 〈9,9〉 .∑

j

〈ν1/2
j 9V

j

intν
1/2
j 9〉 = −Z

∑
j

‖9‖2 +
∑
j

∑
k 6=j
〈9, 2−1/2V (2−1/2|xj − xk|)V (xj )−19〉

= −NZ‖9‖2 +
∑
j<k

〈9, 2−1/2V (2−1/2|xj − xk|)[V (xj )−1 + V (xk)
−1]9〉. (35)

Thus,if the potential satisfies

2−1/2V (2−1/2|xj − xk|)[V (xj )−1 + V (xk)
−1] > 1 (36)

then ∑
j

〈ν1/2
j 9V

j

intν
1/2
j 9〉 > [−NZ +N(N − 1)/2]‖9‖2. (37)

For the cut-off potentialV (x) = 1/(|x|+1), (36) follows easily from the triangle inequality
since

21/2[V (2−1/2|w − x|)]−1 = |w − x| + 21/2 6 |w| + 21/2 + |x| + 21/2 = [V (w)]−1 + [V (x)−1].

For the regularized potentialV0(x) we will use instead the convexity ofν0(x) = [V0(x)]−1.
(Because the proof [27, 28] of this essential fact, although elementary, is rather delicate and
not readily accessible, we provide a sketch in the appendix.) Thus we find,

[V0(w)]
−1 + [V0(x)

−1] > 2[V0(|w − x|/2)]−1 > 21/2[V0(2
−1/2|w − x|]−1 (38)
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where the first inequality usedV0(x) = V0(|x|) as well as the convexity ofν0(x) = [V0(x)]−1

and the second inequality follows from

Vm(2
−1/2y) = [m!]−1

∫ ∞
0

tme−t√
y2/2 + t

dt = 21/2[m!]−1
∫ ∞

0

tme−t√
y2 + 2t

dt 6 21/2Vm(y)

with y = 2−1/2|w − x| andm = 0.
Thus we can conclude that, for both the cut-off potentialVcut(x) = 1/(|x| + 1) and the

regularized potentialV0(x), the one-dimensional Hamiltonianh(N,Z,M) satisfies

Tr 00h(N,Z,M) > E0(N,Z,M)Tr 00 + [−NZ +N(N − 1)/2−Nω/M]‖9‖2. (39)

The second term in (39) will be positive if(N − 1)/2 > Z + ω/M. For both potentials,
ω = supx |ν ′(x)|2/4ν(x) is given by limx→0 |ν ′(x)|2/4ν(x). This yields,ωcut = 0.25 for
the cut-off potential andω0 = π−3/2 < 0.18 for the regularized potentialV0(x). The
latter follows fromω = ν(0)3 = π−3/2 and the fact that, as shown in the appendix,
|ν ′(x)|2/4ν(x) = ν(x)[ν(x) − |x|]2 is decreasing forx > 0. Thus, in both cases, the
second term in (39) will be positive ifN > 2Z + 1 + 1/2M. Since binding implies
Tr 00h(N,Z,M) 6 E0(N,Z,M)Tr 00 andM is proportional toB−1/2, we have shown
that one can find a constantc such that our model one-dimensional system does not have
bound states ifN > 2Z + 1 +c

√
B orNmax< 2Z + 1 +c

√
B.

Although this bound is not optimal, it should be remembered that we are analysing a
Hamiltonian with the structure

h(N,Z,B−1/2) = h(N − 1, Z, B−1/2) +B1/2Kj + Vint(xj ) (40)

and that the factor
√
B multiplying the kinetic energy is something of a two-edged sword.

On the one hand, it raises the energy of the effective one-electron HamiltonianB1/2K1 +∫
Vint|ψ(x1, x2, . . . , xN)|2 dx2 . . .dxN ; on the other, it multiplies any error arising from the

kinetic energy—whether using Lieb’s strategy or the Ruskai–Sigal localization approach
[6, 21, 22, 26]—by

√
B. Since such correction terms are typically negative, the result of

such treatments is to perversely magnify the negative error associated with a positive term
otherwise expected to raise the energy.
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Appendix. Convexity and properties of 1/V0(x)

Becauseν(x) = 1/V0(x) is nearly linear (see figure A1), the proof of its convexity is somewhat
delicate. It will follow from the upper bound in the following pair of inequalities, which are
of some interest in their own right:

3x +
√
x2 + 4

4
< ν(x) <

2x +
√
x2 + 3

3
. (41)
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Figure A1. Comparison of 1/V0(x) andx for x > 0.

We now restrict attention tox > 0 and define

gk(x) = k

(k − 1)x +
√
x2 + k

(42)

so that (41) is equivalent to

g4(x) > V0(x) > g3(x). (43)

which is an improvement on the classical inequalities of Komatsu [11]. The upper bound and
convexity were established independently by Wirth [28] and by Szarek and Werner [27]; the
proof of lower bound which follows was communicated to the authors by E Werner.

We now observe thatV0(0) = √π andV0 satisfies the differential equation

V ′0(x) = 2[xV0(x)− 1] (44)

and look for analogous behaviour forgk. Since g′k(x) = −[gk(x)]2 x+(k−1)
√
x2+k

k
√
x2+k

and

xgk(x)− 1= −1
x+
√
x2+k

gk(x), one can verify that

g′k(x) > 2[xgk(x)− 1]⇐⇒ k√
x2 + k

(k − 1)
√
x2 + k + x

(k − 1)x +
√
x2 + k

<
2k

x +
√
x2 + k

⇐⇒ (k − 2)x2 + k(k − 3) < (k − 2)x
√
x2 + k

⇐⇒ x2(k − 2)(k − 4) + k(k − 3)2 < 0. (45)
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Figure A2. Graphs showingg4(x) > V0(x) > g3(x) for x > 0.

For k = 3, we use the first equivalence to conclude fromx2 < x
√
x2 + 3 thatg′3(x) >

2[xg3(x) − 1]; for k = 4, we use the second to concludek(k − 3)2 > 0 ⇒ g′4(x) <
2[xg4(x)− 1].

For k = 3, leth3(x) = V0(x)− g3(x). It is easily to verify thath3(0) = √π −
√

3 > 0
and that limx→∞ |h3(x)| = 0. The first equivalence in (45) implies thatx2 < x

√
x2 + 3⇒

g′3(x) > 2[xg3(x)− 1] so thath′3(x) < 2x[V0(x)− g3(x)] = 2xh3(x)∀x. Now suppose that
for somex = a, h3(a) < 0. Thenh′3(a) < 0 and it follows thath3(x) is decreasing for
x > a, which contradicts limx→∞ h3(x) = 0. This proves the lower bound in (43). The upper
bound is proved similary [27] except that one now shows thath4(x) = g4(x) − V0(x) > 0.
It is interesting to note that the upper bound in (43) is optimal, but the lower bound can be
improved [23] togπ(x) < V0(x). The tightness of these bounds is evident in figure A2.

In order to use this to establish the convexity ofν(x), we note (44) implies that
ν(x) = [V0(x)]−1 satisfies

ν ′(x) = 2ν(x)[ν(x)− x]. (46)

Then

ν ′(x) = 4νν ′ − 2ν ′x − 2ν = 4ν(ν − x)(2ν − x)− 2ν

= 8ν[(ν − 3
4x)

2 − 1
16(x

2 + 4)]
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= 8ν

[(
ν(x)− 1/g4(x) + 1

4

√
x2 + 4

)2
−
(

1
4

√
x2 + 4

)2
]
. (47)

Since (41) impliesν(x) > 1/g4(x), we can conclude thatν ′(x) > 0.
To show that|ν ′(x)|2/4ν(x) = ν(x)[ν(x)−|x|]2 is decreasing forx > 0, we note that (46)

yields

d

dx
[ν(ν − x)2] = 2ν(ν − x)[3ν2 − 4νx + x2 − 1]

= 6ν(ν − x)
[(
ν − 2x

3

)2

− x
2 + 3

9

]
< 0

and (41) implies that the expression in square brackets is negative.
It is useful to have bounds on the extent to whichν(x) andV0(x) deviate from|x| and

the Coulomb potential, respectively, whenx is large. The upper bound in (41) implies
|ν(x) − |x|| < g4(x) − x 6 1/2|x| while the lower bound yields|V0(x) − 1/|x|| <
1/x−g3(x) < 1/2x3. The latter can also be proved directly from the integral representation (6).
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